
REVERSE 

ENGINEERING –

CLASS 0X06

Cristian Rusu

ASLR/PIE, RELRO AND ROP



LAST TIME

• the memory layout

• the stack

• problems with the stack

• mitigations for stack issues

• Stack Smashing Protector (SSP)

SSP: -fstack-protector for gcc and /GS for cl



TODAY

• short review of ASLR/PIE

• RELRO

• ROP

.



• we have previously talked about this

• what happens when we call a function from an external library?

• this is famous puts(“Hello, world”) example

.

RELRO: THE GOT AND PLT



• at runtime, the loader (ld.so) finds the function

• the call to puts from main is actually to a stub

.

RELRO: THE GOT AND PLT



• all the addresses which are filled-in are placed in the GOT

.

RELRO: THE GOT AND PLT



• this tabled can be filled in at start of process or at runtime 

whenever we actually need a function

.

RELRO: THE GOT AND PLT



• as functions are needed, table is filled

.

RELRO: THE GOT AND PLT

any security issue you might see?



• as functions are needed, table is filled

.

RELRO: THE GOT AND PLT

any security issue you might see?

puts(“/bin/sh”) becomes system(“/bin/sh”)



• solution: Read Only RELocations (RELRO)

.

RELRO: THE GOT AND PLT

security-wise this is OK, but any drawback?



• Position Independent Execution (PIE)

• on by default on both Windows and Linux

• Stack Smashing Protection (SSP)

• on by default on Windows, off by default on Linux

• Read Only RELocations (RELRO)

• on by default on Windows, off by default on Linux

.

SUMMARY OF MITIGATIONS

all these are done at the compiler



• Position Independent Execution (PIE)

• on by default on both Windows and Linux

• Stack Smashing Protection (SSP)

• on by default on Windows, off by default on Linux

• Read Only RELocations (RELRO)

• on by default on Windows, off by default on Linux

.

SUMMARY OF MITIGATIONS

all these techniques come for free?



• Position Independent Execution (PIE)

• on by default on both Windows and Linux

• Stack Smashing Protection (SSP)

• on by default on Windows, off by default on Linux

• Read Only RELocations (RELRO)

• on by default on Windows, off by default on Linux

.

SUMMARY OF MITIGATIONS

they cause an increase of 15–25% in running time



• Return Oriented Programming (ROP)

.

ROP



ROP: DATA EXECUTION

• the good-old times (shellcode.c)

.



ROP: DATA EXECUTION

• same program in Assembly

.



ROP: DATA EXECUTION

• the same program back in C

.

what is going on here?



ROP: DATA EXECUTION

• the same program back in C

.

programs like these can no longer run on modern operating systems

• Data Execution Prevention (DEP)

• No eXecute (NX)



• we are no longer in a golden age for attackers

• but there are some new ideas

• goal: we would still like to execute arbitrary code

• not be confined in the code space of the binary

• problem: we cannot place code into data segments anymore

• so, where can we place code?

• can we use something that exists already?

.

ROP: THE IDEA



• we are no longer in a golden age for attackers

• but there are some new ideas

• goal: we would still like to execute arbitrary code

• not be confined in the code space of the binary

• problem: we cannot place code into data segments anymore

• so, where can we place code?

• can we use something that exists already?

• one solution: use pieces of code that already exist but stitch 

them together in a different order than the original one to 

perform overall the task that you want (like building a puzzle)

.

ROP: THE IDEA



• we cannot just stitch different pieces of code in general

• so how do we do this?

• what do we want?

• jump to some instructions

• execute starting from that point

• then jump to other instructions

• what can we use to perform the wishlist above?

.

ROP: THE IDEA



• we cannot just stitch different pieces of code in general

• so how do we do this?

• what do we want?

• jump to some instructions

• execute starting from that point

• then jump to other instructions

• what can we use to perform the wishlist above?

• CALL

• RET

.

ROP: THE IDEA



• what does CALL destination do?

• what does RET do?

.

ROP: THE IDEA



• what does CALL destination do?

• pushes the return address on the stack (instruction after the CALL)

• changes the Instruction Pointer to destination

• what does RET do?

• pops the return address from the stack

• go to where the Stack Pointer points to

• take the value from there (it is an address)

• increment Stack Pointer (i.e., remove address from the stack)

• changes the Instruction Pointer to that address

.

ROP: THE IDEA



https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation/return-to-libc-ret2libc

ROP: THE IDEA

this is a classic stack overflow

but what if there is no system? (or anything dangerous to do)



• we overflow a lot more than just the return address

.

ROP: THE IDEA



• we overflow a lot more than just the return address

.

ROP: THE IDEA

these are called gadgets



WHAT WE DID TODAY

• short review of ASLR/PIE

• SSP

• RELRO

• ROP

.



NEXT TIME ...

• RE for bytecode

.



• Stack Binary Exploitation, https://ir0nstone.gitbook.io/notes/types/stack

• pwntools-tutorial, https://github.com/Gallopsled/pwntools-
tutorial/blob/master/rop.md

• Return Oriented Programming (ROP) attacks, 
https://resources.infosecinstitute.com/topic/return-oriented-programming-
rop-attacks/

• Binary exploitation, https://www.ired.team/offensive-security/code-
injection-process-injection/binary-exploitation

• Weird Return-Oriented Programming Tutorial, 
https://www.youtube.com/watch?v=zaQVNM3or7k

.

REFERENCES

https://ir0nstone.gitbook.io/notes/types/stack
https://github.com/Gallopsled/pwntools-tutorial/blob/master/rop.md
https://github.com/Gallopsled/pwntools-tutorial/blob/master/rop.md
https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/
https://resources.infosecinstitute.com/topic/return-oriented-programming-rop-attacks/
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation
https://www.ired.team/offensive-security/code-injection-process-injection/binary-exploitation
https://www.youtube.com/watch?v=zaQVNM3or7k


.


	Slide 1: Reverse Engineering – Class 0x06 
	Slide 2: Last time
	Slide 3: today
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Rop: data execution
	Slide 16: Rop: data execution
	Slide 17: Rop: data execution
	Slide 18: Rop: data execution
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: What we did today
	Slide 29: Next time ...
	Slide 30: references
	Slide 31

